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It is often required to find “smooth’ analytic representations for antenna reflector
surfaces which are prescribed only by discretized data obtained by various synthesis
methods. Frequently the data are distributed in a nonuniform grid and contain noise. The
“smoothness” required is to C; for physical optics diffraction analysis and to C, for
Geometrical Theory of Diffraction (GTD) analysis. Furthermore, the GTD analysis ap-
proach requires a surface description which returns data very rapidly. Two methods of
interpolation, the global and the local methods, are discussed herein. They each have
advantages and disadvantages — usually complementary. These characteristics are dis-

cussed and examples are presented.

l. Introduction

The diffraction analysis of reflector surfaces which are
described only at a discrete set of locations usually leads to the
requirement of an interpolation to determine the surface
characteristics over a continuum of locations. Such discretized
surface descriptions can come about from a set of point
measurements for example. Another common source of such
a description is the dual offset shaped reflector synthesis
(Refs. 1 and 2), which may involve numerical difference type
solutions over a discretized field.

The physical optics analysis of a reflector antenna requires
an accurate description of the point characteristics (e.g.,
[x, ¥, z] or [r, 0, ¢]) of the surface, and it also requires a rea-
sonably accurate description of the slopes (e.g., [0z/dx =
z,,2,] or [rg,r,]) at the same points. The GTD analysis
requires, further, an accurate knowledge of the second deriva-
tives at the same points. The second derivatives provide the
scattered amplitude for both the GO and the diffraction parts
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of GTD. Hence the GTD analysis of shaped reflectors with dis-
cretized raw data requires an accurate and often time consum-
ing interpolation process.

In dual reflector antennas, it is usually desirable to analyze
the subreflector by GTD since more near-zone observation
points are required on the main reflector than far field obser-
vation points of the main reflector. (We diffraction analyze the
main reflector by the Jacobi-Bessel method [Refs. 3-and 4].)
The interpolation techniques to be described are applicable to
both reflectors, but we will describe results found for a shaped
subreflector synthesized for high gain.

High gain shaped subreflectors represent a more than aver-
age difficult surface to describe because the surface curves
more rapidly and often possesses inflection points (Refs. 1
and 5). A profile description of such a dual reflector is shown
in Fig. 1. Also illustrated are the projected (on the [6.9]
plane) discretized raw data locations at equal (A8,A¢) incre-
ments. In some synthesis methods (Ref. 1), the raw data



consists of 7, ry, and r, at each (6,¢) discretized location.
However, the derivative data of at least one derivative (in
Ref. 1 the r, derivative) are unstable since they are computed
by difference techniques which do not permit very small in-
crements.

A method for evaluating the accuracy and stability of a
surface description is to compute the ‘“distance” function
derivatives D, and D,,. The distance D is the the distance
from the source to a point on the reflector and then to the
observation point. When D is a minimum (Fermat) we have a
GO or an edge diffraction spectral point. In our evaluation
method, we allow the point on the subreflector to vary in posi-
tion with ¢ (8 fixed). Usually we take § = 0,,,x along the
edge of the reflector, although all § values should be evaluated.

The results for a particular set of raw data (Ref. 5) are
shown in Fig. 2. Note the erratic second derivative behavior
(D, = 0 implies a diffraction spectral point — there are two).

ll. Global Interpolation

A global interpolation representation is a closed form or
series expression valid over the entire surface. The coeffi-
cients of a series expression are found by an integration of the
raw data. Since far fewer coefficients are used to describe the
surface than raw data points, the integration effectively pro-
vides a smoothing of the raw data.

For example, the Jacobi polynomiai-sinusoidal (Ref. 3)
expansion was found (Ref. 6) to provide a fast converging rep-
resentation of the offset shaped subreflector discussed. The
representation is
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of the expansion functions.

In Fig. 3, the distance function D is found to be perfectly
smoothed in the global description of the reflector. In Fig. 4
we observe the convergence of the D, and the Dy, functions

with N X M terms. Although N X M =4 X 4 = 16 terms are
totally adequate for D,, (at the edge), several more terms are
required for Dy,. Actually the derivatives with respect to 0
demand some extra terms. The GTD diffraction pattern for
the same shaped subreflector is shown in Figs. 5 and 6. The
depicted patterns are taken in the plane of offset of the subre-
flector which possesses left-right symmetry. A feed with
-16 dB taper at the subreflector edge was used. The pattern
increases with 8 because it is shaped to compensate for the
space loss that results when feeding a main offset shaped
reflector for high gain. The amplitude is dependent directly
upon the second derivatives of the reflector surface.

Figure S illustrates the convergence of the pattern with
increasing number of global coefficients to represent the sur-
face. We find 4 X 4 = 16 terms are adequate except for some
cross polarization introduced near 6 ~ -3°. There is no cross
polarization with 5 X 5 = 25 terms. In Fig. 6, we observe the
same GTD pattern obtained for 5 X § global terms and the
results obtained directly from the raw data.

The advantages of the global representation can be briefly
summarized:

(1) It converges rapidly and uses a small computer core to
describe the entire reflector (16~50 real numbers).

(2) Itisanalytically smooth through the second derivatives.

(3) It can be readily used as a synthesis tool with optimiza-
tion techniques since few terms are involved.

The principle disadvantage of the global representation is
that it is computationally much slower than closed form ex-
pressions such as the hyperboloid formula. In GTD analysis,
the search for the GO and edge spectral points (for many
observation points) may require many thousands of surface
evaluations. Hence a very fast local interpolation (which may
use a large set of data and core) is desirable.

lll. Local Interpolation

A local interpolation provides a closed form expression for
only a small area of the reflector surface. In Fig. 7, we divide
the subreflector into three (or more) sectors where each have
constant (Af,A¢) discretized data. Each area segment is then
described by a two-dimensional quadratic surface — locally:

= 2 2
z=a taxtaytaxttaxytay

The six coefficients are found locally from six data points and
stored for that particular (8,¢) location. Although the second
derivatives z ., z,, and z_, can be found from the quadratic
expression above, we choose to find an average zyy,y .
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Zxyave Zyyavg OVer the area segment. We thus store nine
instead of six real numbers for each segment. We found this
averaging necessary because our computer word size (36 bits)
would not allow a sufficiently small (A8,A¢) to be used so as
to calculate the second derivatives accurately from the quad-
ratic expression above. The averaging method worked suc-
cessfully.

A quadratic expression was used instead of a higher order
local expression because of our required “maximum speed
possible”” computation. Furthermore, we required our surface
to return (X, Y, Z, Zy; Z. ny, Zyy) data from a (6,9)
input. The required computation is fast and simple for a quad-
ratic expression but rapidly becomes more complex as the

order of the local surface is increased.

The disadvantages of the local interpolation are essentially
the same as the advantages of the global interpolation. In par-
ticular, a large core is required for the local interpolation. The
advantage is the higher speed and ““turn-around” time for com-
putations. The speed is

(1) Independent of the surface complexity (or the number
of terms required by the global method)

(2) >20 X global for 50 global terms
>10 X global for 25 global terms

The local interpolation does require “‘smooth” raw data. We
found it useful to first obtain a global expression and then do
our diffraction analysis rapidly with the local interpolation.
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Fig. 1. Dual offset shaped (high gain) reflectors
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Fig. 3. Distance function D, for raw data and global data shaped
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Fig. 7. Local interpolation
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